LW–AB Components of Liquid Surface Tension

Lifshitz-van der Waals/Lewis Acid–Base (LW–AB) Components of Liquid Surface Tension

    \[  {{\gamma }_L={\gamma }^d_L+{\gamma }^P_L} \]

Here is a list of materials that are frequently used in laboratories, research centers, and industrial sites, accompanied by some of their characteristics and surface properties. In case you need any of these materials listed below, feel free to Contact Us and request a quote.

Liquid

Chemical Formula

Temperture

γLWL (mN/m) Van der waals

γ+L (mN/m) Acceptor

γL (mN/m) Donord

Reference

Water

H2O

20

26.85

22.975

22.975

[ 1 ]

21.8

25.5

25.5

[ 6,7 ]

30

26.85

22.218

22.218

[ 1 ]

37

21

24.55

24.55

[ 3 ]

40

26.85

21.461

21.461

[ 1 ]

44

20.6

24.15

24.15

[ 3 ]

70

19.3

22.6

22.6

[ 3 ]

95

17.9

21

21

[ 3 ]

Glycerol

C3H8O3

20

34

9.43

23.87

[ 1 ]

34

3.92

57.4

[ 6 ]

30

34

8.88

24.35

[ 1 ]

40

34

8.48

24.46

[ 1 ]

Ethylene glycol

C2H6O2

20

29

4.70

19.20

[ 1 ]

29

1.92

47

[ 6,7 ]

30

29

3.93

20.90

[ 1 ]

37

28.1

1.86

45.5

[ 3 ]

40

29

3.45

21.49

[ 1 ]

44

27.8

1.84

45

[ 3 ]

70

26.8

1.77

43.4

[ 3 ]

95

25.7

1.71

41.7

[ 3 ]

Formamide

C3H7NO

20

39

3.68

24.62

[ 1 ]

39

2.28

39.6

[ 6,7 ]

30

39

3.38

24.43

[ 1 ]

40

39

2.91

25.79

[ 1 ]

Diiodomethane

CH2I2

20

50.8

0

0

[ 1,4 ]

30

49.42

0

0

[ 1 ]

37

48.3

0

0

[ 3 ]

40

48.05

0

0

[ 1 ]

44

47.3

0

0

[ 3 ]

70

43.8

0

0

[ 3 ]

95

40.5

0

0

[ 3 ]

Tribromopropane

C3H5Br3

20

45.40

0

0

[ 1 ]

30

44.13

0

0

[ 1 ]

40

42.87

0

0

[ 1 ]

Bromonaphthalene

C10H7Br

20

44.40

0

0

[ 1 ]

43.5

0

0

[ 6 ]

30

43.42

0

0

[ 1 ]

40

42.44

0

0

[ 1 ]

Tetradecane

C14H13

20

26.6

0

0

[ 4 ]

Pentadecane

C15H32

20

27.07

0

0

[ 4 ]

Hexane

C6H14

20

18.4

0

0

[ 4 ]

Dimethyl sulfoxide

C2H6OS

20

32

0.5

32

[ 6 ]

Chloroform

CHCl3

20

27.15

3.8

0

[ 6 ]

References:

[ 1 ] Zdziennicka, A., Krawczyk, J., Szymczyk, K., & Jańczuk, B. (2017), Components and parameters of liquids and some polymers surface tension at different temperature, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 529, 864–875

[ 2 ] Cantin, S., Bouteau, M., Benhabib, F., & Perrot, F. (2006), Surface free energy evaluation of well-ordered Langmuir-Blodgett surfaces: Comparison of different approaches, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 276(1–3), 107–115

[ 3 ] Zhao, Q., Liu, Y., & Abel, E. W. (2004), Effect of temperature on the surface free energy of amorphous carbon films, Journal of Colloid and Interface Science, 280(1), 174–183

[ 4 ] Hwang, G., Lee, C. H., Ahn, I. S., & Mhin, B. J. (2011), Determination of reliable Lewis acid-base surface tension components of a solid in LW-AB approach, Journal of Industrial and Engineering Chemistry, 17(1), 125–129

[ 5 ] Ismail, M. F., Khorshidi, B., & Sadrzadeh, M. (2020), New insights into the prediction of adaptive wetting of a solid surface under a liquid medium, Applied Surface Science, 532

[ 6 ] Leó, V., Tusa, A., & Araujo, Y. C. (1999), Determination of the solid surface tensions I. The platinum case, Colloids and Surfaces A: Physicochemical and Engineering Aspects, (Vol. 155)

[ 7 ] Köstler, S., Delgado, A. v., & Ribitsch, V. (2005), Surface thermodynamic properties of polyelectrolyte multilayers, Journal of Colloid and Interface Science, 286(1), 339–348

LW–AB Components of Liquid Surface Tension